Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Ming-Tian Li, ${ }^{\text {a }}$ Qin-Ling Liao, ${ }^{\text {a }}$

Xu-Cheng Fu ${ }^{\text {a,b }}$ and Cheng-Gang Wang ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Chemistry, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China, and ${ }^{\text {b }}$ Chemistry and Biology Department, West Anhui University, Liu an, Anhui 237000, People's Republic of China

Correspondence e-mail:
wangcg23@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=292 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.014 \AA$
R factor $=0.037$
$w R$ factor $=0.072$
Data-to-parameter ratio $=22.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

catena-Poly[[[3,7-bis(dimethylamino)phenothiazonium] lead(II)-tri- μ-iodo] N, N^{\prime}-dimethylformamide]

In the title compound, $\left\{\left(\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{OS}\right)\left[\mathrm{PbI}_{3}\right] \cdot \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}\right\}_{\mathrm{n}}$, each $\mathrm{Pb}^{\mathrm{II}}$ atom is bonded to six I atoms to form chains of trans faceshared PbI_{6} octahedra. In the crystal structure, the cations are stacked along the c axis, with significant $\pi-\pi$ interactions.

Comment

Organic-inorganic hybrid coordination polymers containing iodoplumbate have been studied extensively due to their variety of applications (Krautscheid et al., 2001; Tang et al., 2001). We report here the crystal structure of such a compound, (MB) $\left[\mathrm{PbI}_{3}\right] \cdot \mathrm{DMF}$ (MB is methyl blue and DMF is N, N^{\prime}-dimethylformamide), (I).

(I)

The molecular structure of (I) is shown in Fig. 1. The anion consists of chains of trans face-shared PbI_{6} octahedra. The $\mathrm{Pb}-\mathrm{I}$ distances range from 3.1234 (9) to 3.3827 (10) \AA, with an average value of $3.2624 \AA$, which is in agreement with that reported for $\left[\mathrm{Me}_{4} \mathrm{~N}\right]\left[\mathrm{PbI}_{3}\right]$ ($3.22 \AA$; Contreras et al., 1983). However, the $\mathrm{Pb}-\mathrm{I}-\mathrm{Pb}$ angles in (I) (Table 1) are narrower than those observed in $\left[\mathrm{Na}_{4}(\mathrm{DMF})_{14}\right]\left[\mathrm{PbI}_{3}\right]_{4}$, in which the angles lie in the range 81.98 (3)-91.13 (3) ${ }^{\circ}$ (Krautscheid et al., 2001).

In the crystal structure of (I), the methyl blue cations, which counter-balance the charge on the inorganic anion, are

Figure 1
View of (I), showing the atom-labelling and 50% probability displacement ellipsoids. H atoms have been omitted.

Received 10 June 2005 Accepted 17 June 2005 Online 24 June 2005

Figure 2
The crystal packing of the cations of (I), viewed along the c axis. H atoms have been omitted.
stacked along the c axis, with $C g 1 \cdots C g 2^{i}$ and $C g 1 \cdots C g 3^{\text {ii }}$ distances of 3.494 (5) and 3.579 (5) A , respectively [Cg1, Cg2 and $C g 3$ are the $\mathrm{S} 1 / \mathrm{N} 1 / \mathrm{C} 3 / \mathrm{C} 4 / \mathrm{C} 9 / \mathrm{C} 10, \mathrm{C} 1-\mathrm{C} 3 / \mathrm{C} 10-\mathrm{C} 12$ and C4-C9 ring centroids; symmetry codes: (i) $x, 2-y, z+\frac{1}{2}$; (ii) x, $\left.2-y, z-\frac{1}{2}\right]$, indicating significant $\pi-\pi$ interaction (Fig. 2). The anionic chain has no significant hydrogen-bonding interactions with the organic cations. The iodoplumbate chains exist in the cavities formed by the methyl blue cations and the DMF molecules.

Experimental

$\mathrm{PbI}_{2}(230 \mathrm{mg}, 0.5 \mathrm{mmol})$ and $\mathrm{NaI}(188 \mathrm{mg}, 1.25 \mathrm{mmol})$ were dissolved in acetone (50 ml) and the mixture was stirred for 2 h at room temperature. The resulting yellow solution was filtered off and added to a DMF solution of $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{OS}^{+} \cdot \mathrm{Cl}^{-} \cdot 3 \mathrm{H}_{2} \mathrm{O}(320 \mathrm{mg}, 0.5 \mathrm{mmol})$ and the mixture was stirred at 343 K for 5 h . Propan-2-ol vapour was allowed to diffuse into the blue solution. Over the course of two weeks, dark-blue crystals of (I) formed.

Crystal data

$$
\begin{aligned}
& \left(\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{OS}\right)\left[\mathrm{PbI}_{3}\right] \cdot \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO} \\
& M_{r}=945.38 \\
& \text { Monoclinic, } C c \\
& a=23.458(7) \AA \\
& b=13.923(4) \AA \\
& c=8.228(2) \AA \\
& \beta=101.163(5)^{\circ} \\
& V=2636.5(13) \AA^{3} \\
& Z=4
\end{aligned}
$$

Data collection
Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 2000)
$T_{\text {min }}=0.203, T_{\text {max }}=0.368$
14424 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$
$w R\left(F^{2}\right)=0.072$
$S=0.93$
6078 reflections
268 parameters
H -atom parameters constrained

6078 independent reflections
4912 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.040$
$\theta_{\text {max }}=28.0^{\circ}$
$h=-30 \rightarrow 30$
$k=-18 \rightarrow 18$
$l=-10 \rightarrow 10$
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0084 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.010$
$\Delta \rho_{\text {max }}=1.47 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.72 \mathrm{e}^{-3}$
Absolute structure: Flack (1983);
2937 Friedel pairs
Flack parameter: 0.013 (6)

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Pb} 1-\mathrm{I} 3$	$3.1234(9)$	$\mathrm{Pb} 1-\mathrm{I} 2^{\mathrm{ii}}$	$3.3391(11)$
$\mathrm{Pb} 1-\mathrm{I} 1^{\mathrm{i}}$	$3.1862(10)$	$\mathrm{Pb} 1-\mathrm{I} 1$	$3.3510(11)$
$\mathrm{Pb} 1-\mathrm{I} 2$	$3.1920(11)$	$\mathrm{Pb} 1-\mathrm{I} 3^{\mathrm{i}}$	$3.3827(10)$
$\mathrm{I} 3-\mathrm{Pb} 1-\mathrm{I} 1^{\mathrm{i}}$	$93.83(3)$	$\mathrm{I} 2^{\mathrm{ii}}-\mathrm{Pb} 1-\mathrm{I} 1$	$81.02(3)$
$\mathrm{I} 3-\mathrm{Pb} 1-\mathrm{I} 2$	$94.50(3)$	$\mathrm{I} 3-\mathrm{Pb} 1-\mathrm{I} 3^{\mathrm{i}}$	$177.76(2)$
$\mathrm{I} 1^{\mathrm{i}}-\mathrm{Pb} 1-\mathrm{I} 2$	$85.90(3)$	$\mathrm{I} 1^{\mathrm{i}}-\mathrm{Pb} 1-\mathrm{I} 3^{\mathrm{i}}$	$84.51(3)$
$\mathrm{I} 3-\mathrm{Pb} 1-\mathrm{I} 2^{\mathrm{ii}}$	$85.68(3)$	$\mathrm{I} 2-\mathrm{Pb} 1-\mathrm{I} 3^{\mathrm{i}}$	$83.89(3)$
$\mathrm{I} 1^{\mathrm{i}}-\mathrm{Pb} 1-\mathrm{I} 2^{\mathrm{ii}}$	$177.98(3)$	$\mathrm{I} 2^{i \mathrm{i}}-\mathrm{Pb} 1-\mathrm{I} 3^{\mathrm{i}}$	$96.02(3)$
$\mathrm{I} 2-\mathrm{Pb} 1-\mathrm{I} \mathrm{I}^{\mathrm{ii}}$	$96.10(3)$	$\mathrm{I} 1-\mathrm{Pb} 1-\mathrm{I} 3^{\mathrm{i}}$	$95.66(3)$
$\mathrm{I} 3-\mathrm{Pb} 1-\mathrm{I} 1$	$86.03(3)$	$\mathrm{Pb} 1^{\mathrm{ii}}-\mathrm{I} 1-\mathrm{Pb} 1$	$77.99(3)$
$\mathrm{I} 1^{\mathrm{i}}-\mathrm{Pb} 1-\mathrm{I} 1$	$96.99(4)$	$\mathrm{Pb} 1-\mathrm{I} 2-\mathrm{Pb} 1^{\mathrm{i}}$	$78.09(3)$
$\mathrm{I} 2-\mathrm{Pb} 1-\mathrm{I} 1$	$177.03(3)$	$\mathrm{Pb} 1-\mathrm{I} 3-\mathrm{Pb} 1^{\mathrm{ii}}$	$78.37(2)$
Symmetry codes: (i) $x,-y+1, z+\frac{1}{2} ;$ (ii) $x,-y+1, z-\frac{1}{2}$.			

The H atoms were placed in idealized positions, with $\mathrm{C}-\mathrm{H}$ distances of $0.93-0.96 \AA$, and constrained to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$ for methyl H atoms and $1.2 U_{\text {eq }}(\mathrm{C})$ for the other H atoms. The highest peak in the final difference map is located 0.95 Å from Pb 1 .

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

This work was supported by the Hubei Key Laboratory of Novel Chemical Reactions and Green Chemical Technology (grant No. RCT2004011).

References

Bruker (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2000). SMART, SAINT and SADABS (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.
Contreras, J. G., Seguel, G. V., Ungerer, B., Maier, W. F. \& Hollander, F. J. (1983). J. Mol. Struct. 102, 295-298.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Krautscheid, H., Lode, C., Vielsack, F. \& Vollmer, H. (2001). J. Chem. Soc. Dalton Trans. pp. 1099-1104.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Tang, Z.-J., Jun, G. \& Guloy, A. M. (2001). J. Mater. Chem. 11, 479-482.

